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Abstract. In ordinary and relativistic quantum mechanics the energy spectra of most of the
Hamiltonians cannot be obtained exactly. Approximate methods have to be used among which
the variational one is particuarly popular. The purpose of this paper is to show that when the 4×4
matricesα, β appearing in a Dirac equation with interaction, are replaced by a direct product of
2× 2 matrices associated with ordinary and what we call sign spins, then a standard complete
set of non-relativistic wavefunctions can be used to carry out the variational calculations. To
illustrate the power of our method we analyse first the variational energies of ordinary and Dirac
relativistic oscillator Hamiltonians, and then indicate the procedure for the general one-particle
case. The extensions to higher spins, or to a larger number of particles, are briefly mentioned
in the conclusion.

1. Introduction

The three-dimensional single-particle stationary Schrödinger equation has had innumerable
applications [1]. Except for special potentials such as the oscillator or Coulomb ones, its
energy spectra cannot be obtained exactly. Thus, in general, approximation methods are
used, among which the variational one is particularly popular. Frequently the basis of states
on which the variational procedure is applied, is an explicit orthonormal one with some
variational parameters, for example the harmonic oscillator states whose frequencyω is
varied to get the best approach to the actual bound state levels of the problem.

The observations of the previous paragraph have been extensively used and applied in
ordinary quantum mechanics [1], but when we are in the relativistic range the literature is
not as vast [2]. In this paper we shall analyse a variational procedure, based on a complete
set of harmonic oscillator states but coupled to spin1

2, applied to a Dirac Hamiltonian with
arbitrary interaction of the form

H ′ = cα · p′ +mc2β + V (r ′) (1.1)

where

α =
(

0 σ
σ 0

)
β =

(
I 0
0 −I

)
(1.2)

with σ being the vector of Pauli spin matrices, and all the observables carry a prime to
indicate that they are in standard c.g.s. units. We shall later introduceH,p, r without primes
for units that are more convenient to our analysis. The potentialV (r ′) usually depends only
on the magnitude of the position vectorr′ if it comes from the fourth component of the
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Dirac equation [1], or is of the formV (r ′)β if its origin is related to a mass that is position
dependent.

Before deriving the matrix formulation ofH ′ in an appropriate basis it is convenient
to consider some special cases ofH ′ in which the method can be discussed numerically,
to see about its convergence and validity as compared with exact results, and thus we shall
first apply our analysis to relativistic harmonic oscillators, in the first case when in (1.1) we
have

V (r ′) = 1
2m�

2r ′2 (1.3)

with � being the frequency, while in the second we shall discuss what we have called the
Dirac oscillator given by (1.1) whenV (r ′) = 0 but in which we make the replacement

p′ → p′ − im�r′β. (1.4)

In the following sections we shall show that our variational procedure is very good at
giving us the energy spectra of the two problems mentioned above.

2. Variational energy spectra of the ordinary relativistic harmonic oscillator

As mentioned above, the present problem corresponds toV (r ′) given by (1.3) and we shall
start by subtracting the rest energymc2 from the Hamiltonian and making it dimensionless
through the definition

H = (h̄�)−1(H ′ −mc2). (2.1)

Furthermore, we shall employ as the set of variational functions one that includes
harmonic oscillator states of frequencyω. As it would be bothersome to have this frequency
in the wavefunction when we calculate matrix elements, we prefer to introduce it in the
Hamiltonian as was done in [4], by making inH of (2.1) the change of variables

p′ = (mωh̄)1/2p r′ =
(
h̄

mω

)1/2

r (2.2)

so as to obtain

H = aεα · p+ 1

2ε2
r2I + a2(β − I) (2.3)

where

a =
√
mc2

h̄�
ε =

√
ω

�
(2.4)

andI is a 4× 4 unit matrix.
With the help ofε we have incorporated the oscillator frequency in the Hamiltonian

and thus in our variational function we need only to use [4] oscillator states of frequency 1.
Our next point is to note that the 4× 4 matricesα, β, I in (2.3) can be converted into

direct products of 2× 2 ones by introducing the definitions [5]

Î =
(

1 0
0 1

)
s1 = 1

2

(
0 1
1 0

)
s2 = 1

2

(
0 −i
i 0

)
s3 = 1

2

(
1 0
0 −1

)
(2.5)

Ĭ =
[

1 0
0 1

]
t1 = 1

2

[
0 1
1 0

]
t2 = 1

2

[
0 −i
i 0

]
t3 = 1

2

[
1 0
0 −1

]
. (2.6)

The matricessi, i = 1, 2, 3, are those of the ordinary spin12, while ti , i = 1, 2, 3 which
we distinguish by a square instead of a round bracket, have the same definition as thesi
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but play a very different role and we called themsign spinsince they are associated with
the sign of the energy [5]. The set of matrices (2.5), (2.6) are identical to those appearing
in supermultiplet theory as introduced by Wigner [6] but in which theti , i = 1, 2, 3 were
interpreted as the components of isotopic spin.

From definitions (1.2), (2.5), (2.6) we clearly see thatα, β, I can be expressed as the
direct products

α = 4s⊗ t1 β = 2Ĭ ⊗ t3 I = Î ⊗ Ĭ . (2.7)

Replacing (2.7) in (2.3) we finally obtain

H = 4aε(s · p)⊗ t1+ 1

2ε2
r2(Î ⊗ Ĭ )+ a2[2(Î ⊗ t3)− (Î ⊗ Ĭ )]. (2.8)

For the variational analysis of the Hamiltonian (2.8) we start, as in the non-relativistic
problem [4], with the orbital harmonic oscillators of frequency 1 expressed as

|Nlµ〉 = RNl(r)Ylµ(θ, ϕ) (2.9)

with Ylµ being spherical harmonics andRNl being the radial functions of equation (1.8) of
[4], but now characterized by the total number of quanta

N = 2n+ l (2.10)

wheren = 0, 1, 2, . . . is the radial quantum number.
In the relativistic case we are dealing with here we must replace (2.9) by a ket that

includes the ordinary spin12 state which we denote byχσ , σ = ± 1
2, so that we get the ket

|N(l, 1
2)jm〉 ≡

∑
µσ

〈lµ, 1
2σ |jm〉|Nlµ〉χσ (2.11)

where 〈|〉 is a Clebsch–Gordan coefficient andj,m the total angular momentum and its
projection. The latter are eigenvalues for integrals of motion of the problem as

J = L+ s (2.12)

(with the components ofs given by (2.5) andL = r × p) obviously commutes with the
Hamiltonian (2.8).

We are not yet through with our basic variational states as we still have to include the
part related with the sign spin12, which could be denoted by the ket| 12τ 〉 with the eigenvalue
τ of t3 being τ = ± 1

2. Thus the states with respect to which we have to determine the
matrix elements ofH can be denoted by the kets

|N(l, 1
2)j ; τ 〉 ≡ |N(l, 1

2)jm〉 ⊗ | 12τ 〉 (2.13)

in which we suppressed them because the matrix elements of the Hamiltonian do not
depend on it [7], and also the index1

2 as it is fixed.
From (2.8) and (2.13) we see that the variational matrix elements of the Hamiltonian

are given by

〈N ′(l′, 1
2)j ; τ ′|H |N(l, 1

2)j ; τ 〉

= 4aε

{
〈N ′(l′, 1

2)j |s · p|N(l, 1
2)j〉〈 12τ ′|t1| 12τ 〉

}
+δll′δττ ′

2ε2

{
〈N ′l‖r2‖Nl〉

}
+ a2

{
(2τ − 1)δτ ′τ δN ′Nδl′l

}
= 4aε

{
(−1)l

′+ 1
2−jW(ll′ 12

1
2; 1j)[2(2l′ + 1)]1/2〈N ′l′‖p‖Nl〉

√
3
4〈 12τ ′|t1| 12τ 〉

}
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+δll′δττ ′
2ε2

{
− 1

2

[
(N − l)(N + l + 1)

]1/2

δN ′N−2

+(N + 3
2)δN ′N − 1

2

[
(N − l + 2)(N + l + 3)

]1/2

δN ′N+2

}
+a2

{
(2τ − 1)δτ ′τ δN ′Nδl′l

}
(2.14)

where the first curly bracket on the right-hand side comes from formula (6.21) of Rose’s
book [8], while the second curly bracket is obtained from (3.11) in [1], if we write
r2 = (p2+ r2)− p2.

The reduced matrix element〈N ′l′‖p‖Nl〉 can be immediately determined by writing

p = (i/
√

2)(η − ξ) (2.15)

where η, ξ are creation and annihilation operators, whose reduced matrix elements can
be obtained from equation (10.35) of [1]. Substituting in (2.14) the value mentioned
of 〈N ′l′‖p‖Nl〉 as well as the Racah coefficientsW(ll′ 12

1
2; 1j) and the matrix element

〈 12τ ′|t1| 12t〉 given respectively in [8, pp 227, 83] we finally obtain:

〈N ′(l′, 1
2)j, τ

′|H |N(l, 1
2)j, τ 〉

= iaε√
2

{
−
[
(j + l + 5

2)(j + l + 1
2)(l − j + 3

2)(j − l + 1
2)

(2l + 1)(2l + 3)

]1/2

×
[
(N + l + 3)1/2δN ′N+1+ (N − l)1/2δN ′N−1

]
δl′l+1

+
[
(j + l + 3

2)(l − j − 1
2)(j + l − 1

2)(j − l − 3
2)

(2l + 1)2l − 1)

]1/2

×[(N − l + 2)1/2δN ′N+1+ (N + l + 1)1/2δN ′N−1]δl′l−1

}
×{[( 1

2 − τ)( 3
2 + τ)]1/2δτ ′τ+1+ [( 1

2 + τ)( 3
2 − τ)]1/2δτ ′τ−1}

+δl′lδτ ′τ
2ε2
{− 1

2[(N − l)(N + l + 1)]1/2δN ′N−2+ (N + 3
2)δN ′N

− 1
2[(N − l + 2)(N + l + 3)]1/2δN ′N+2}
+a2{(2τ − 1)δτ ′τ δN ′Nδl′l}. (2.16)

The question now is to write the matrix itself for a definitej up to a maximum number of
quantaN, i.e. writeN,N ′ restricted to the interval 06 N,N ′ 6 N, and then diagonalize
it for a fixeda getting the energiesE as a function ofε and looking for values of the latter
that give a minimum, at least for those related to positive values of the energy.

The simplest case of (2.16) corresponds toj = 1
2, which impliesl = 0 or 1, for which

N is either even or odd. Thus, in this case the kets (2.13) can be written in the short hand
notation

|Nτ 〉 (2.17)

whereτ = ± 1
2 will be denoted by±.

Our matrix elements can then be written as

〈N ′τ ′ |H |Nτ 〉 (2.18)

and we see from (2.16) that the kinetic energy connects the kets|N±〉 with the bra’s
〈(N ± 1)∓|, while the potential energy relates|N±〉 with the bra’s〈(N ± 2)±|, 〈(N±|. If
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we then start with the state denoted by 0+ in the ket, we can take the values of columns
and rows in the matrix of elements (2.18) in the following order

0+, 1−, 2+, 3−, . . .14+, 15− . . . (2.19)

while if we start with 0− we get an independent matrix whose ordering is

0−, 1+, 2−, 3+, . . .14−, 15+ . . . . (2.20)

In (2.19) the states of positive or negative energy (given by the+ or − sign above the
numbers) are associated respectively with an even or odd number of quantaN and parity
(−1)N , while in (2.20) the relation is reversed.

We shall discuss in detail the case when the ket|N±〉 are given in the order (2.19), as
the results for the order (2.20) will be similar.

In the numerical calculation we have to specify first the value ofa, defined by (2.4),
that we shall use. We will consider the two cases

a = 10 and a = 1. (2.21)

In the first case we have ¯h� = (mc2/100) and this implies that the oscillator interaction
is much weaker than the rest energy, so we would expect for positive energies, curves for
the energyE as function ofε very similar to those of the non-relativistic problem [1] with
a minimum close toε = 1, i.e.ω = �. On the other hand, for this value ofa = 10 we also
get the negative energy curves that start with energyE being close to+∞ if ε → 0, and
then give a set of almost parallel lines at negative energies whenε ' 1 and finally collapse
to E → −∞ if ε → ∞. These negative energies are monotonically decreasing so they
would not correspond to bound states of negative energy but rather represent, in a discrete
fashion, the continuous negative energy spectrum of this problem.

All of the above comments are illustrated in figure 1 in whicha = 10. In part (a) we
have the positive energies with the characteristics we mentioned above, where atε ' 1,
and the energies are very close to

(2n+ 3
2) n = 0, 1, 2, . . . (2.22)

while in figure 1(b) we give the curves for negative energies again with the characteristics
we mentioned above. In figure 1(c), we change the scale to draw together the positive
and negative parts of the energies as a function ofε, and show the gap of 2a2 ' 200
between them at the minima whenε ' 1, as we would expect in a relativistic problem, as
it corresponds to 2mc2 in units of h̄�.

We turn now our attention to the case whena = 1, which impliesh̄� = mc2, so that
we are in a fully relativistic situation. Again we draw the energy curves as a function of
ε in figure 2. To see the situation clearly this figure is divided into three parts. First, in
figure 2(a) we give the positive energies as a function ofε where we find that the curves
take the value+∞ both whenε = 0 andε = ∞. This implies that we have minima and
thus bound states continue to exist but now they appear for the lowest energy atε ' 2.2,
i.e.ω =' 4.84�, and their values are given in table 1, where, for comparison, we also give
the values whena = 10.

Then in figure 2(b) we give the negative energy values which start at+∞ if ε = 0 and
then decrease monotonically withε until they reach the value−∞ when ε → ∞. There
are thus no negative bound states and what we are seeing is then the discrete representation
of the continuous negative spectrum. Finally in figure 2(c), we choose the scale so that both
positive and negative energy curves can be drawn together but here, while not crossing [9]
they appear almost together up to values close toε = 2, and then they start to separate as
seen on the right-hand side of figure 2(c).
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Figure 1. We draw the variational energy curves for the ordinary relativistic oscillator withE

as a functionε ≡ (ω/�)1/2 whena = 10, and where we take all the states in (2.19) from|0+〉
to |15−〉. We have thus a 16× 16 matrix that will give rise to 16 curves, of which eight start
at E = +∞ when ε = 0 and end atE = +∞ when ε = ∞. Thus they have a minimum as
seen in (a), and it occurs close toε = 1, as fora = 10, h̄� = (mc2/100) and we are in the
non-relativistic limit whereE = (2n + 3

2), n = 0, 1, . . .7 as seen in table 1. The other eight
curves start atE = +∞ whenε = 0 but then decrease monotonically toE = −∞ whenε = ∞
as seen in (b). Thus they have no bound states and in fact atε ' 1 they are given by almost
parallel lines that represent, in a discrete fashion, the continuous negative energy spectrum of the
problem. In (c), we change the scale to draw together the positive and negative energy curves
of E as function ofε and show the gap of 2a2 = 200 that separates them atε ' 1, which we
could expect in a relativistic problem, as it corresponds to 2mc2 in units of h̄�.

Incidentally at ε = 2.2, the separation between the positive minimum energy and
the first negative one is approximately 2. As, in this particular case, we are taking
a ≡ (mc2/h̄�) = 1, this means that again the gap 2mc2 in units of h̄� is maintained.

Thus, we see that a variational analysis using the kets (2.13) as trial wavefunctions,
gives valid results fora = 10 that we can compare with the non-relativistic limit at least
for the positive energies. Fora = 1 we just have to trust the calculations of table 1 for the
energies of bound states as already ¯h� is equal tomc2 and thus non-relativistic results are
not applicable.
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Table 1. Variational energies of relativistic harmonic oscillator at the values ofa andε indicated,
where the latter gives the minimum of the positive energies. On the left-hand side, we indicate
the values ofn corresponding to formula (2.22) of the text.

n E for a = 10, ε = 1 E for a = 1, ε = 2.2

0 1.499 1.438
1 3.481 2.680
2 5.444 3.838
3 7.401 4.959
4 9.341 6.129
5 11.268 7.360
6 13.184 8.670
7 15.124 10.162

To gain more confidence in our procedures we shall also apply them to the Dirac
oscillator of (1.4) as the energy spectra of this relativistic problem can be calculated exactly,
and so we can compare it with the variational analysis for any value of the parameter
a = (mc2/h̄�)1/2.

3. Variational energy spectra for the Dirac oscillator

From equation (1.1) and (1.4) we see that in c.g.s. units the Hamiltonian of the Dirac
oscillator [3] can be written as

H ′ = c[α · (p′ − im�r′β)] +mc2β (3.1)

and we can analyse it variationally by following the same steps that we used in the previous
section.

We first replaceH ′ by H through definition (2.1), and then also substitute ther′,p′ by
the r,p as defined in equation (2.2). Finally theα, β are replaced by the direct products
of 2× 2 matrices as in equation (2.7). Thus we arrive at the Hamiltonian

H = 4a{ε[(s · p)⊗ t1] − ε−1[(s · r)⊗ t2]}
+a2[2(Î ⊗ t3)− (Î ⊗ Ĭ )] (3.2)

wherea andε have the same definition as in (2.4) and we use the fact that

αβ = 4[(s⊗ t1)(Î ⊗ t3] = 4s⊗ t1t3 = −4is⊗ t2. (3.3)

We now take as variational functions the same ones that we used before, i.e. those given
by equation (2.13), so that again with the help of formula (6.21) of [8] we have that

〈N ′(l′, 1
2)j ; τ ′|H |N(l, 1

2)j ; τ 〉 = 4a{ε〈N ′(l′, 1
2)j |s · p|N(l, 1

2)j〉〈 12τ ′|t1| 12τ 〉
−ε−1〈N ′(l′, 1

2)j |s · r|N(l, 1
2)j〉〈 12τ ′|t2| 12τ 〉}

+a2(2τ − 1)δN ′Nδl′lδτ ′τ

= 4a

{
(−1)l

′+ 1
2−jW(ll′ 12

1
2; 1j)[2(2l′ + 1)]1/2

√
3
4

}
×
{
ε〈N ′l′‖p‖Nl〉〈 12τ ′|t1| 12τ 〉 − ε−1〈N ′l′‖r‖Nl〉〈 12τ ′|t2| 12τ 〉

}
+a2(2τ − 1)δN ′Nδl′lδτ ′τ . (3.4)
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Figure 2. We draw the variational energy curves for the ordinary relativistic oscillator withE

as a function ofε when a = 1 and where, as before, we take all states (2.10) from|0+〉 to
|15−〉. We have thus 16 curves of which again eight start atE = +∞ when ε = 0 and end
E = +∞ whenε = ∞ . Thus they have a minimum, as seen in (a), but asa = 1, which means
h̄� = mc2, we are in the relativistic region and the minimum does not occur atε = 1 but at
ε ' 2.2, while the energy spectrum is compressed as seen in table 1. The other eight curves
start atE = +∞ when ε = 0 but then decrease monotonically toE = −∞ when ε = ∞, as
seen in (b). Thus they have no bound states and atε ' 2.2 they give almost parallel lines that
represent, in a discrete fashion, the continuous negative energy spectrum of the problem. In (c)
we change the scale to show both curves together which overlap at smallε but do not cross,
and later get separated into positive and negative energies with eight curves in each part as seen
at the end of (c). At ε = 2.2 the separation between the minimum positive energy and highest
negative one is approximately 2, so again a gap of 2mc2 in units of h̄� is maintained.

The reduced matrix element〈N ′l′‖p‖Nl〉 was already discussed in the previous section
and that of〈N ′l′‖r‖Nl〉 can be obtained in a similar fashion as

r = (1/
√

2)(η + ξ). (3.5)

By using the explicit form of the Racah coefficientW(ll′ 12
1
2; 1j) and of the matrix of

ti , i = 1, 2, 3, we could obtain for the matrix element (3.4) ofH an expression similar to
(2.16). We are going to do numerical calculations only for the simplest case which, as in
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Figure 3. We draw the variational energy curves of the Dirac oscillator withE as a function
of ε when a = 1 and we take all states (2.19) from|0+〉 to |15−〉. We have thus 16 curves,
but here they break up elegantly into two parts, eight in positive and eight in negative energies
and the minima or maxima occur both atε = 1 and coincide with the exact values for the
reasons discussed in the text. Note that atε = 1 the upper and lower values ofE correspond
respectively toN even or odd as indicated in equations (3.7) and (3.8).

the previous case, turns out to bej = 1
2. In that casel, l′ can only take the value 0 or 1.

When l = l′ the only contribution is from the last term in (3.4), i.e.a2(2τ − 1)δN ′Nδl′lδτ ′τ .
Thus, we just need to give explicitly the matrix elements (3.4) whenl = 0 and l′ = 1 or
vice versa, with the latter being the Hermitian conjugate of the former. Thus, from the
discussion given above the only matrix element of interest whenj = 1

2 is given by

〈N ′(l′, 1
2)

1
2, τ
′|H |N(l, 1

2)
1
2, τ 〉

= −iaε√
2

[
√
N + 3δN ′N+1+

√
NδN ′N−1]{[( 1

2 − τ)( 3
2 + τ)]1/2δτ ′τ+1

+[( 1
2 + τ)( 3

2 − τ)]1/2δτ ′τ−1}
+ ia

ε
√

2
[
√
N + 3δN ′N+1−

√
NδN ′N−1]{−[( 1

2 − τ)( 3
2 + τ)]1/2δτ ′τ+1

+[( 1
2 + τ)( 3

2 − τ)]1/2δτ ′τ−1}. (3.6)

Using (3.6) as well as the diagonal part mentioned above we have written down a 16×16
matrix based on the chain (2.19) starting with|0+〉 and ending with|15−〉. This matrix has
a and ε as parameters, and we select firsta = 1, so onlyε remains. We then diagonalize
the matrix for different values ofε and obtain the curves of the energyE as function ofε
as shown in figure 3.

It turns out that curves have two branches, the positive ones starting atE = +∞ when
ε = 0, and going back to+∞ when ε → ∞. The negative ones do the reverse, i.e. take
the valuesE = −∞ when ε = 0 or∞. Thus the positive curves have a minimum that
turns out to occur atε = 1, while at the same value the negative ones have a maximum.
Had we taken instead ofE negative, its absolute value|E|, as suggested by Quesne [10]
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using arguments of Dirac’s hole theory, then|E| as function ofε would behave in a similar
way as the positiveE, i.e. it would have minima atε = 1.

The minima would then give the variational energy of the bound states of the problem,
which are the only ones present in the exact solution that has a discrete spectrum [3].

In figure 3 we tooka = 1, j = 1
2 and also see that in (2.19) the even or oddN

correspond to positive or negative energy as they have the superscript+ and−.
In fact our variational approximation is so good that forε = 1 it already gives the actual

energy eigenvalues [3, 10] as equation (3.2) withε = 1, a = 1, j = 1
2 gives, as a function

of N , for positiveE+ and negativeE− energies, theexact values [3, 10]

E+ = −1+ (1+ 2N)
1
2 if N is even (3.7)

E− = −1− (3+ 2N)
1
2 if N is odd. (3.8)

Thus, we have to compare these values with those of figure 3 whenε = 1 and by using
a ruler one can see that they exactly agree. This excellent convergence is related with the
fact that the state|N(l, 1

2)jm〉 of (2.11) turns out to be an eigenstate of the Dirac oscillator
problem [3, 10], but this in no way demerits our variational calculation as it is done for any
ε and we just happen to apply it to a problem whose energy spectra has an exact solution
to which it corresponds at the minima, i.e. whenε = 1.

We note incidentally that our variational calculation also gives a spurious state that we
do not draw, which corresponds to the negative energyE− = −2, at ε = 1, which from
(3.8) would be associated to the ket withN = −1 that does not exist, a fact also noted by
Quesne [10].

Again we note from (3.7) and (3.8) that forε = 1 the separation between the energy
levels corresponding toN = 0 andN = 1 is 1+ √5 > 2 and it implies (as we already
observed in the ordinary relativistic oscillator), that there is a gap of 2mc2 or larger in units
of h̄� between the positive and negative energy states. We also recall that our analysis
was restricted toa = 1, but for arbitrarya, the results are very similar and provide no new
relevant information.

In the present example our variational analysis gives us exactly what we expect, and
thus we can use it with confidence in getting the spectra of other relativistic Hamiltonians,
as we proceed to outline in the next section.

4. Variational energy spectra for an arbitrary relativistic Hamiltonian

We now wish to outline the procedure to be followed in a variational analysis, when applied
to Hamiltonian (1.1) withV (r ′) being some arbitrary functions ofr ′ and, in some cases,
even containing the matrixβ. We first subtract from (1.1) the rest energymc2 and then
divide H ′ − mc2 by some constant number of the dimension of energy appropriate to the
potential. For example, if we deal with the Coulomb potential(−e2/r ′) it is convenient to
divide by the Bohr energyEB = (mc4/2h̄2) as was done in [11].

Once we carry out the operation indicted in the previous paragraph, it gives us a
dimensionless Hamiltonian

H = b−1(H ′ −mc2) (4.1)

whereb is the number mentioned above. We also carry inH the replacement ofr′,p′ by
the dimensionless variablesr,p defined in (2.2). We thus obtain an equation forH that
depends besidesr,p,α, β on the parameter

ε ≡ (h̄ω/b) 1
2 . (4.2)
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In equation (4.1) we replace thenα, β by their expressions as direct products of 2× 2
matrices of ordinary and sign spin as indicated in (2.7). From this point on the analysis for
determining the variational matrix elements follows the same steps as in section 2. We use
as variational states the same kets as those defined in (2.13), (2.11), (2.9), and obtain the
matrix elements.

〈N ′(l′, 1
2)j, τ

′|H |N(l, 1
2)j, τ 〉 (4.3)

in which for the kinetic and rest energy matrix elements we have the same expression that
appears in the first and last parts of (2.16). The middle of (2.16) corresponds to a matrix
element of potential energy proportional tor2, so it has to be replaced by

〈N ′l′‖V (r)‖Nl〉δl′lδτ ′τ =
[ ∫ ∞

0
RN ′l(r)V (r)RNl(r)r

2 dr

]
δl′lδτ ′τ

=
∑
p

[
B

(
N − l

2
l,
N ′ − l

2
l, p

)
Ip

]
δl′lδτ ′τ (4.4)

whereRNl(r) are the radial functions of the three-dimensional oscillator of frequency 1
given in (1.8), (1.9) of [4], where we have to replacen by [(N − l)/2] as indicated in
(2.10).

On the right-hand side of (4.4) we have the coefficientsB given by the algebraic
expression (2.6) of [4], where again we use relation (2.10), and these coefficients have been
tabulated numerically in [12].

The Ip is the Talmi integral defined by [12]

Ip = 2

0(p + 3
2)

∫ ∞
0
r2p+2V (r)e−r

2
dr (4.5)

and in many cases it is very easy to evaluate. For example, we have for

V (r) = rλ Ip = [0(p + 1
2λ+ 3

2)/0(p + 3
2)] (4.6)

V (r) = e−u
2r2

Ip = (1+ u2)
−p− 3

2 (4.7)

as seen in [4, p 4].
Thus we are in a position to obtain explicit expressions for〈N ′l′‖V (r)‖Nl〉 so that the

matrix elements (4.3) are completely defined as functions ofε.
Again, as in section 2, we have to take a set of states|N(l, 1

2)j ; τ 〉 with fixedj connected
by the Hamiltonian and we consider these states fromN = 0 to a maximum valueN = N.
We then diagonalize the resulting matrix for series of values ofε to get the energyE(ε),
and trace curves such as those appearing in figures 1–3. We can then determine theε for
the minima of the lowest curve, and with this value ofε get variational energy spectra for
the potential in question.

Thus, we have outlined a general procedure for getting the variational energy spectra
of an arbitrary relativistic Hamiltonian.

5. Conclusion

What is the most important point of the procedure we have outlined in this article? The
answer [5] is the writing ofα, β as direct products of(2× 2) matrices associated with
ordinary and sign spin. This allows us to use as variational functions those of (2.13) that
are identical to those employed in nuclear physics when isotopic spin is present instead of
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the cumbersome procedure of Dirac functions that have two components associated with
positive and negative energies.

Once the previous paragraph is understood, it opens many possible generalizations of
the procedure that we have developed in this paper. For example, instead of the radial part
of harmonic oscillator states we could use any other complete set of orthonormal functions,
among which the Sturmian–Coulomb radial functions given in equation (41.17) of [4], seem
particularly appropriate for the variational discussions of the relativistic Coulomb problem,
as their exponential part goes as e−λr , instead of e−3r

2
for the harmonic oscillator states.

One can also extend our analysis to relativistic Hamiltonians of arbitrary spin, using
the technique outlined in [5, 11] for determining the corresponding wave equations. The
variational procedure will be very similar but with the complication that we will need the
reduce matrix elements of the generators of a U(4) group, with respect to states belonging
to irreps of the chain U(4) ⊃ Û(2)⊗Ŭ(2). Finally we may also use the concept of sign spin
to analyse, by a very different method, the important problem of relativistic many-electron
atoms.
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